The geese have been of special interest to wildlife biologists because of their recreational and commercial importance. In addition, aspects of their biology, such as population cycles and nesting systems, have made them a favorite exemplar for population and evolutionary studies (Johnsgard 1983).

The classification of the geese, at the specific, generic and suprageneric levels, has long been controversial (e.g. Peters 1934, Stier 1967, Johnsgard 1983, Sibley & Monroe 1990, Dickerman & Gustafson 1996; Ellisworth, Honeycutt & Silkmy 1966). Shost (1967) noted that much of the controversy stems from the fact that male goose postures exaggerated and visual secondary sexual characteristics that correspond to the "generic characters" of an earlier taxonomic worldview. Following the broadening of the species category in the 1930s and 1940s (e.g. Mayr 1942), many divergent forms were lumped into single species that resulted in monotypic genera. This led to a greatly increased ratio of the number of genera to species,
The biological species concept (Mayr 1963) has generally been used to recognize species of grouse (e.g. Short 1967). However, in several cases, we included well-differentiated forms that would probably be recognized as phylogenetic species in a modern revision of the grouse (Zink & McKitrick 1995). Consequently, we included both major taxa of the North American spruce grouse complex (spruce grouse Canachites canadensis and Franklin’s grouse C. franklinii), both forms of the blue grouse complex (dusky grouse Dendragapus obscurus and sooty grouse D. fuscugans), and both the red grouse Lagopus scoticus and willow ptarmigan L. lagopus. All these taxa are diagnosed as are the two capercailles Tetrao urogallus and T. parvirostris, the two black grouse Lyrurus tetrix and L. mlokosiewiczi, and the two hazel hens Tetrao bonasia and T. aterciopi. The North American species pairs have been recognized recently as subspecies because they hybridize locally. However, we treat all these taxa as species-level taxa in this paper. Finally, we sequenced Old and New World forms of two species of ptarmigan (willow ptarmigan and rock ptarmigan Lagopus mutus) that occur in both the boreal and alpine regions because they might represent divergent genetic populations that simply appear similar in plumage (i.e., they might represent cryptic species). The remaining taxa in our study were the ruffe grouse Bonasa umbellus, white-tailed ptarmigan Lagopus leucurus, sage grouse Centrocercus urophasianus, greater and lesser prairie chickens Tympanuchus pinnatus and T. gallilidocus, respectively, and sharp-tailed grouse T. phasianellus.

Grouse are phylogenetically placed in the family Phasianidae, within and that assemblage most closely related to the pheasants and turkey (e.g. Sibley & Ahlquist 1990). Consequently, we included several Phasianidae as outgroups to ensure that we could reliably root the network of these relationships. Jungle fowl GALLUS gallopavo, grey partridge Perdix perdix, Lady Amherst’s pheasant Chrysolophus amherstiae, wild turkey Meleagris gallopavo, and oscinated turkey Agriocharis ocellata were used for that purpose.

Genes sequenced

In order to obtain a sufficient amount of sequence to ensure robust estimates of relationships, we completely sequenced five mitochondrial genes for all taxa. The genes were cytchrome-o, cytchrome-oxidase-3, adenosine triphosphate-6, adenosine triphosphatase-6, and NADH dehydrogenase-2. These loci were amplified using oligonucleotide primers and PCR followed by sequencing in an ABI377 automated sequencer.

Data analysis
DNA sequences were “usually aligned”, all three codon positions and transitions and transversions were given equal weight in phylogenetic analysis. Relationships among the taxa were determined using the program PAUP* (Swoford 1998); we searched for minimum length trees using parsimony with 500 heuristic searches with random addition of sequences. In order to estimate which relationships were strongly supported by the data, 500 bootstrap replicate analyses were performed with two random additions of taxa nested within each replicate. In the bootstrap analyses, the data matrix was resampled with replacement over DNA base positions. A consensus of the 500 resampled trees was found using PAUP* and the percentage of the bootstrap samples in which a node occurred was taken as a measure of the support in the data for that node in the consensus tree of relationships (Sanderson 1995, Efron, Hall- ran & Holmes 1996).

Classification
In order to obtain a classification for the grouse based on the sequence data, we followed taxonomic procedures designed to produce maximally predictive classifications (Farris 1979, Wiley 1981) while adhering to the guidelines of the International Code of Zoological Nomenclature (ICZN 1985) with respect to priority of names. Our use of suprageneric ranks and other conventions follows that of Wiley (1981) and Livezey (1998).

Results and discussion
Molecular results
We obtained aligned sequences of 3,809 basepairs of protein-coding genes. The data was described completely, including Genbank accession numbers, in a future paper by J.G. Groth, G.F. Barrowclough & R.J. Gutiérrez. Although there was a single shortest tree (Fig. 1E), some of the apparent relationships may not be strongly supported by the data. Therefore, we based our proposed classification on the consensus of 500 bootstrap trees (Fig. 1E, see Table 1) because we believe it is most useful to derive classifications from results that are robust. No nodes are shown within the grouse with support of <95%. Bootstrap proportions of 80-90% are strongly supported (i.e. they have only a 10% chance of not being supported given further data of the same type). For our classification, we base hierarchi- cal levels, and thus names, only on nodes that have boot- strap support of ≥85%; this corresponds to standard statistical levels of error.

The results strongly (100% bootstrap) support the monophyly of a clade consisting of all grouse. In addi- tion, members of the genus Lagopus were recovered in monothetic (98%). Further, some suprageneric relationships that had been widely suspected were recovered, including the existence of a clade consisting of capercaillie plus black grouse (100%). Finally, γ-clade consisting of the two prairie chickens plus the sharp- tailed grouse is sister to a clade of the dusky grouse plus sooty grouse (96%); this in turn is sister to the sage grouse (98%). This latter clade of North American grouse has not been recognized traditionally. In fact, some authors suggest that blue and spruce grouse are close relatives (e.g. Short 1967, AOU 1983). However, our finding is not particularly surprising as others failed to find evidence for relationships between blue and spruce grouse (e.g. Soog & Schroeder 1992, Dickerman & Gustafson 1996, Ellisworth et al. 1996). Additionally, the Centrocercus, Dendragapus and Tym- panuchus clade is consistent with biogeography.

We did not find strong support for a close relationship between the New World ruffed grouse and the two Old World hazel hens. This may seem surprising, but their recognition as conegers was recent (Short 1967). The DNA data (Ellisworth et al. 1996, J.G. Groth, G.F. Barrowclough & R.J. Gutiérrez, unpublished manuscript) strongly indicated that these two lineages represent an old divergence that may actually predate the origin of the remainder of the extant grouse. Nevertheless, the non-Bonasa grouse (zoox Short 1967) did form a single, well-supported clade (99%).

Classification
We believe that a useful classification should be predictive of additional characters besides those used to create the classification. That is, the classification should indicate how the states of additional characters will be distributed among groups, perhaps including new behavioural or physiological ones currently not recon- sidered or of interest. A cladistic classification based on a phylogeny has such properties (Farris 1979). However, in converting our phylogeny into such a classification, we choose to recognize only those groups that are thoroughly supported by the data (bootstrap values > 95%). We also continue the use of widely recognized

207
Figure 1. Relationships of porgy based on mitochondrial DNA sequences. A) One of four minimum length trees based on 600 basepair ingem of the mitochondrial cytochrome b gene. B) consensus tree based on 900 bootstrap samples from the 600 basepair fragment. C) one of two minimum length trees based on the complete 1,143 basepair cytochrome b gene. D) consensus tree based on 900 bootstrap samples from the complete cytochrome b gene. E) single minimum length tree from 3,809 basepairs representing five complete mitochondrial protein-coding genes. F) consensus tree based on 900 bootstrap samples from the five complete mitochondrial genes. Bootstrap values on branches in right panel indicate percentage of bootstrap replicates in which clades occurred.
generic names whose they are not in conflict with our results. It is possible within a cladistic classification to attach a name to every node, but we do not do so. Rather, we recognize major clades whose possible, and avoid the problem of a name for every node by adopting the sequencing convention described by Wiley (1981), where feasible, in which successive names at the same rank correspond to successively more derived clades. We present our complete classification in Table 1.

The grous have sometimes been recognized as a family-level group (Peters 1934), but this cannot be justified given their position within Phasianidae. A family-level treatment for grous would require many additional family-level taxa in order to avoid a paraphyletic Phasianidae. More recently, the grous have been treated as a subfamily (AOU 1998). We continue that treatment here, but recognize that this may cause problems when a cladistic classification of the entire Galliformes is prepared; recognition of a subfamily for grous may eventually require the recognition of a large number of subfamilies in the Phasianidae.

The lack of monophyly for Short's (1967)'s enlarged Bonasia requires the resurrection of Tetrao for the two hazel grouse. Consequently, the three early diverging lineages of grous consist of the genera Bonasia and Tetrao, and a clade of all other grous. These are the major basal clades and we treat them as tribes.

Within the largest of these three clades, the relationships of the sharp-winged grous are not clear. Thus, it cannot be merged into any other genus; consequently, the monotypic genus Falcopteryx is retained in any classification. Therefore, the two New-World spruce grous must have their own genus; this must be Cauchetia by priority, Tetrax, and Lirurus are traditional used genera and there seems to be no point in lumping them; although that would be consistent with our results, it is not required. A similar line of reasoning applies to Centrocercus, Dendragapus, and Tympanuchus; they could be lumped, but are widely used and do correspond to monotypic taxa. However, no unique generic name can be used for the sharp-tailed grous (e.g., Pedocetes); such a monotypic genus would result in a paraphyletic Tympanuchus; consequently, it is not justified. In Lagopus, a new genus could be created for L. leucura, but that is not required; the problem of recovering the hierarchical relationships within that genus is obviated by the use of the sequencing convention with L. leucura first in the sequence. Thus, our molecular results and the above reasoning leave us with five monotypic clades within the largest of the three basal tribes of grous (see Fig. IF and Table 1). We believe it is useful to acknowledge these major divisions by naming each as a subtribe. This does not affect common usage as most authors will continue to refer to the individual species by their generic and specific appellations; however, the five subtribes will allow persons cataloging the classification to realize that some evolutionary characteristics of grous are predicted to be distributed at these subtribal levels. In our classification, the three tribes and five subtribes are annotated with metabolites because they result from a consensus of bootstrap trees and their relative hierarchical relationships are not known at the 5% level.

The heath hen Tympanuchus cupido is extinct and is consequently preceded by a dagger in the classification (see Table 1). It was completely allopatric from the greater prairie chickens Tympanuchuscumminsi and based on several diagnostic characters (Ridgway & Friedrich 1946), we judge it to be a species-level taxon. Atwater's prairie chicken Tympanuchus pityusus atwateri had a range that at one time was contiguous with that of the greater prairie chicken from which it apparently does not differ by any diagnosable characters (Ridgway & Friedrich 1946). Consequently, we do not judge it to be a separate species-level taxon. Tissue samples of the heath hen and a new sage grouse were not available for sequencing as part of our study.
Therefore, they are placed in the classification based on available descriptions of their plumage but in the absen-
ence of molecular data; these placements are indicated by
square brackets (see Table 1).
In our classification, we recognize a single species of rock ptarmigan, it is possible that future analysis of
plumage may result in the discovery of monophyle-
tic lineages that are geographically separate. In such a
case, some current subspecies-level taxa of Lagopus mu-
 tus would be elevated to species taxa. Likewise, it is
possible that further analysis of the willow ptarmigan
may result in the discovery of monophyletic New
World and Old World clades of this taxon. That would
require the addition of another species-level taxon.
We sequenced rock ptarmigan from Alaska and Scot-
lund; they differed by approximately 1%. Our individ-
uals of willow ptarmigan from Alaska and Finland
differed by approximately 0.5%. These levels of se-
quence divergence are roughly equivalent to the diver-
gence between sharp-tailed grouse and the two piairie
chickens; thus it is plausible that with further detailed
sampling, the rock and willow ptarmigan might require
splitting; we have no evidence either way for that at
present. Both the spruce grouse/franklin’s grouse pair
and the sooty grouse/dusky grouse pair differ by more
than 1%; this is more than the sequence divergence be-
tween prairie chickens and sharp-tailed grouse. Our re-
cognition of the red grouse as a species, due to its de-
rivied plumage pattern, moult, and biogeography, leaves
a paraphyletic willow ptarmigan. However, para-
phyletic taxa at the specific level are often required because,
during the process of speciation, monophyly does not
arise precisely at the same time in both daughter spe-
cies.

Sequence length and robustness
We investigated the effects of the quantity of DNA
sequence data on the robustness of the resulting phylog-
eny by reanalysing portions of our own data. First, we
analysed 669 basepairs of cytochrome-b correspond-
ing to the fragment used by Ellsworth et al. (1996).
However, we used all grous species and our out-
groups (Ellsworth et al. 1996) used only a subset of
these. The tree we obtained from the data using PAUP* 7
showed neither the grous, in general, nor Lagopus, in
particular, to be monophyletic (see Fig. 1A). These prob-
lematical results were similar to those of Ellsworth et al.
(1996). Thus, if a classification based on a fraction
of the cytochrome-b gene were developed, not only
would some starting changes be necessary but the clas-
sification itself would be unstable because it would not
be strongly supported by the data (see below).

We used bootstrap resampling of the 669 basepair
fragment of our data to determine which hierarchical
relationships were present in more than 90% of 500 sub-
samples. Few relationships are strongly supported by
this small fragment of the mitochondrial genome (Fig.
1B); the only suprageneric-clade recovered is that con-
sisting of the two turkeys. Thus, there is little robust sup-
port for higher level phylogenetic relationships in 609
basepairs of cytochrome-b.

We next repeated the analyses using the complete
1,143 basepair cytochrome-b genes (Fig. 1C shows the
shortest tree). The grous were monophyletic, but oth-
er problems remained, including polyphyly for example,
three separate lineages of Lagopus. Thus even the entire
cytochrome-b molecule does not support a robust
classification. This is symptomatic of a general prob-
lem in molecular systematics; there is a tendency for
researchers to place too much trust in results that do
not meet standards that would be routine in other branches
of science.

Finally, when the entire, 3,809 basepairs of data were
analysed, robust hierarchical structure was found in the
grous that was not well supported, and in some cases
contradicted, by a 699 basepair fragment or even the
entire cytochrome-b gene. Thus, by increasing the
amount of sequence sampled from approximately 5% to
over 30% of the protein-coding portion of the mito-
chondrial genome, we obtained dramatically improved
results.

Future directions
Based on 3,809 mitochondrial basepairs, we have de-
volved a relatively robust estimate of much of the evo-
lutionary history of grous. However, there are still some
unknown relationships within the subfamily as evi-
denced by lack of resolution of the precise branching
patterns among the three tribes and among the five sub-
tribes. In particular, we remain uncertain concerning two
salient issues: the possibility of a monophyletic clade of
Bonax plus Teverastes, as reflected in classifications
such as that of Short (1967), and the position of Fulci-
penis. In these two cases, mitochondrial data, when
analyzed using parsimony, do not provide robust sup-
port for the relative positions of these taxa. Both of these
problems concern relatively deep divisions within the
phylogeny of grous and, consequently, suggest that
slower-evolving genes, such as nuclear introns or ex-
cos, might be useful future additions to the data. Other

© WILDLIFE BIOLOGY - 6.4 (2000)

210
natively, more sophisticatcd models of DNA evolution than simple parsimony, such as parameter-rich likelihood methods (e.g. Hillis et al., 1996), may provide more precision. Such approaches might enable one to further refine the classification, however, because our classification only treats robusta/croix as higher taxa, further data are unlikely to result in a discordant classification.

Acknowledgments — We are grateful to Dean Amadon for discussions concerning the relationships of glosse, to Tanaz Bedi, Joel Crecraft, Darrel Frost and Brad Lovacevich for discussions concerning classification issues, and to Joel Crecraft, Mary LeCroy and Paul Sweat for comments on an earlier version of this manuscript. Ursula Wulmering, Siegfried Klotz, Larry Caufiel, Greg Sieppert and John Roher generally collated tissue samples of key species. The following agencies provided collecting permits: Alaska Fish and Game (USA), Provincial Government of British Columbia and Yukon (Canu), Finnish Game and Fisheries Research Institute. Field logistical support was provided by Methua field Station. Financial support was provided by the Finnish Game and Fisheries Research Institute, Humboldt State University (OCF Quest and PI Trust), the Leonard J. Sanford Trust, and the Missouri Botanical Laboratory and the Lewis B. and Dorothy Callihan program for Molecular Systematic Studies, a joint initiative of the New York Botanical Garden and the American Museum of Natural History.

References


Johnsgard, PA., 1983: The game of the world. — University of Nebraska Press, Lincoln, Nebraska, USA, 413 pp.


